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Abstract
Motivated by problems in electrostatics and vortex dynamics, we develop
two general methods for constructing Green’s function for simply connected
domains on the surface of the unit sphere. We prove a Riemann mapping
theorem showing that such domains can be conformally mapped to the upper
hemisphere. We then categorize all domains on the sphere for which Green’s
function can be constructed by an extension of the classical method of images.
We illustrate our methods by several examples, such as the upper hemisphere,
geodesic triangles, and latitudinal rectangles. We describe the point vortex
motion in these domains, which is governed by a Hamiltonian determined by
the Dirichlet Green’s function.

PACS numbers: 45.05.+x, 47.10.+g, 02.30.Jr, 05.45.−a

1. Introduction

The need for constructing Green’s function for simply connected domains on general surfaces
arises both for problems in electrostatics [21] and in two-dimensional vortex dynamics [19].
In electrostatics, one would like to construct equilibrium configurations of point charges on
the surface of a conducting sphere interacting by the Coulomb law, for example (this is
sometimes referred to as the dual problem for stable molecules). The surface in question may
have a boundary on which one must prescribe the Dirichlet or Neumann boundary condition
[1, 2, 6, 21]. The corresponding point vortex problem arises in atmospheric and oceanographic
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models where one is interested in the transport of vorticity in a two-dimensional layer
[12–14, 19]. The solid boundary typically would represent some sort of obstruction to
the flow. For example, in the oceanographic context it might represent solid surfaces or shore
effects where the no fluid penetration condition u · n = 0 must be enforced. Here, n is the unit
normal vector on the boundary. In both contexts, one starts by constructing a Green’s function
(also known as Green’s functions of the first and second kinds) for the Dirichlet or Neumann
Laplacian in the domain.

Let � be the Laplace–Beltrami operator for the surface in question, let � be the domain
and ∂� its boundary. The Dirichlet Green’s function satisfies

�G(θ, φ; θα, φα) = δ in �

G = 0 on ∂�,

where δ is the Dirac delta function supported at (θα, φα).
Methods for constructing Green’s function mostly rely on conformal mapping ideas

[7, 16], the method of images, or the inversion [10, 11, 23]. The method of images, in one
form or another, has a firm place in the standard bag of tricks of every mathematical physicist
and applied mathematician. Accordingly, it has a solid place in the physics and engineering
literature. See, e.g., [23], section 17, where it is called the simple reflection method. In his
classical paper [11], Keller gave the method of images a conceptual formulation, thus putting
it on a solid mathematical footing. According to [11], it is ‘ . . . a method for constructing
a Green’s function for a part of space bounded by planes in terms of the corresponding
Green’s function for the full space’. In this formulation, ‘space’ is meant to be Euclidean,
and the ‘planes’ are the Euclidean hyperplanes. Keeping the discussion general, Keller does
not specify any relation between the known Green’s function and Green’s function we want
to construct. However, in the body of the paper he reveals that the desired relation is via
the action of a Coxeter group, respecting the differential operator in question, and that the
domain ‘bounded by planes’ is the fundamental domain of this group. Although the Riemann
mapping method is more general than the image method, it relies on the explicit construction
of a conformal transformation from the domain in question to a standard domain, such as the
unit disc or the upper-half plane.

In this paper, we develop both the method of images and the Riemann mapping method
for regions not restricted to the domains of Euclidean space ‘bounded by planes’. For the
image method, our description hinges on a group of symmetries. This group acts properly
discontinuously on the space, preserving the differential operator in question. Thus, our
framework is more general, and, at the same time, more concrete than the setting of [11].
We develop these methods with the application to the vortex motion on compact surfaces
as our main focus. To understand the motion of vortices on such surfaces, one must first
construct Green’s function of the first kind for the domain in question, then use it to construct
the Hamiltonian governing the motion [19]. To keep the paper reasonably self-contained, we
briefly describe the equations of vortex motion in a spherical domain with boundaries, both on
the surface and in the stereographic projection. We prove a version of the Riemann mapping
theorem for a simply connected domain on the sphere which shows that the upper hemisphere
plays a role similar to that of the unit disc in the Euclidean plane. We fully categorize the
domains on the sphere whose Green’s function can be constructed via the image method.

Let GD(θ, φ; θα, φα) denote the Dirichlet Green’s function for a closed, simply connected
domain � on the surface of the sphere. It can be decomposed as

GD = G + G
(α)
H (1)
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Figure 1. Conformal mapping of a simply connected spherical domain onto the unit disc.

where G is Green’s function for the sphere itself

G(θ, φ; θα, φα) = − 1

4π
log[1 − cos θ cos θα − sin θ sin θα cos(φ − φα)]. (2)

Note that the argument of the log is the chord distance between the points (θ, φ) and (θα, φα).
The term G

(α)
H is to be constructed, so that GD vanishes on the boundary, ∂�. Our goal is

to construct GD for general simply connected domains � on the surface of the unit sphere.
We first prove in section 2 a version of the Riemann mapping theorem which allows us to
conformally map general spherical domains to the upper hemisphere, as shown in figure 1.
In section 3, we work out the image method for the sphere. Then in section 4 we flesh out
the method through several explicit examples. There we construct the Hamiltonian governing
point vortex motion in simply connected domains on the surface of the unit sphere. In the
concluding section 5 we briefly outline a few extensions and generalizations of our methods.

2. Conformal mappings and Green’s functions

The Riemann mapping theorem is a powerful tool of complex analysis with many applications
(see, e.g., [18]). We will apply it to Green’s function of the Dirichlet Laplacian of a spherical
domain. Although, the setting is classical, we could not find a suitable treatment of this
material in the literature. See, however, a remark in [5], vol 1, p 377. We will show that
the Riemann mapping theorem allows us to express Green’s function of a simply connected
domain in the complex plane or the Riemann sphere in terms of Green’s function of the unit
disc. The latter is well known. Let � be the domain in question, and let D be the unit disc.
A conformal mapping φ : � → D yields an explicit expression for Green’s function of �.
For the convenience of the reader, we establish the general setting, and provide the proofs in
some detail. See [5, 18, 22, 23] for the general background on these concepts and the standard
techniques.

The classical Laplacian � = ∂2/∂x2 + ∂2/∂y2 of the Euclidean plane is a special case of
the Laplace–Beltrami operator of a Riemannian manifold. Let X be a manifold of n dimensions,
and let r = rij be a Riemannian metric tensor in local coordinates x1, . . . , xn. The Laplace–
Beltrami operator, � = �(X, r) is a canonical, second-order differential operator on functions
on X (see, e.g., [20]). Let det r be the determinant of the n × n matrix [rij ], and denote by
[rij ] the inverse matrix. Then in the local coordinates we have

�f = 1√
det r

n∑
i,j=1

∂

∂xj

(
rij

√
det r

∂f

∂xi

)
. (3)
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If � ⊂ X is a domain, with a piecewise smooth boundary ∂�, we denote by �� the
corresponding Dirichlet Laplacian. In our immediate applications, (X, r) is either R or the
standard unit sphere S2 ⊂ R

3. However, it is instructive to put our exposition in a more general
context. For typographical reasons, in the displayed formulae that follow we will suppress the
subscripts �, r , etc if this does not lead to an ambiguity. Denote by drx = (det r) dx1 · · · dxn

the Riemannian volume form. Then � is a symmetric operator in the corresponding Hilbert
space. More precisely, if f and g are functions on �, satisfying the Dirichlet boundary
conditions, then∫

�

f (x)(�g(x)) dx =
∫

�

(�f (x))g(x) dx. (4)

Green’s function, g(x, y), is the kernel of the right inverse of �. It is symmetric, vanishes on
� × ∂�, and satisfies the differential equation �g(x, y) = δ(x − y). To be more precise, the
following integral identity holds∫

�

f (x)(�g(x, y)) dx = f (y). (5)

We will now specialize to the case of dimension 2, i.e., to the Riemannian surfaces (X, r).
Recall that X is a Riemann surface, if it has a system of local complex coordinates, zi , and the
transition functions are holomorphic. A Riemannian metric on X is conformal if the metric
tensor locally has the form 1

2 r(z)(dz2 + dz̄2), where r(·) > 0.5

Two Riemannian metrics, r1 and r2, on a manifold are conformally equivalent if they
differ by a (necessarily positive) factor, r2 = ρ(·)r1. We will also say that the metrics r1 and
r2 belong to the same conformal class. In what follows we consider only Riemann surfaces
and conformal metrics. The complex plane, and the Riemann sphere S2, with the canonical
metrics, are our basic examples. An open subset of a Riemann surface with a conformal metric
inherits both structures. We will now recall the basic notion of a conformal mapping.

Definition 1. Let Z,U be Riemann surfaces. A mapping φ : Z → U is conformal if in
respective local coordinates it is given by u = φ(z), where ∂φ/∂z̄ = 0 identically, and
∂φ/∂z �= 0 everywhere.

An invertible conformal conformal mapping φ : Z → U is a conformal equivalence. In what
follows we consider only them, and we suppress the adjective ‘invertible’.

In general, the relation between the Laplace–Beltrami operators on a manifold
corresponding to different metrics is complicated. In the case under consideration, it simplifies.

Proposition 1. Let Z be a Riemann surface. Let r, r̃ be two conformal metrics on Z, and set
r̃ = ρ(·)r . Denote by � and �̃ the corresponding Laplace–Beltrami operators. Then,

�̃ = ρ−1�. (6)

Proof. It suffices to show this relation locally. Let z be a local coordinate on Z. Then there
is a function r(z) > 0 such that the metric r is given by 1

2 r(z)(dz2 + dz̄2). Substituting this
into equation (3), we get by a direct calculation the local expression of the Laplace–Beltrami
operator:

(�f )(z) = 4r(z)−1 ∂2f

∂z∂z̄
. (7)

The operator �̃ is given by equation (7) as well, only now the factor preceding ∂2/∂z∂z̄ is
4(ρr)(z)−1. �
5 The factor 1

2 is introduced for numerical convenience.
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Differentiable mappings allow us to transfer functions, metrics and differential operators
from one manifold to another. Thus, let Z and U be Riemann surfaces, and let φ : Z → U

be a conformal mapping. If L is any differential operator on U, we can pull it back to Z via
φ, obtaining a differential operator, φ∗L, of the same order. Likewise, if L is a differential
operator on Z, we can push it forward by φ, obtaining a differential operator, φ∗L, on U. See,
e.g., [24] for the background on this material. The metrics can be also pulled back and pushed
forward, and we will use analogous notation for that. The operations of pulling back and
pushing forward are mutual inverses. Indeed, replacing φ by its inverse, φ−1 : U → Z, we
interchange them. We will study the pull-backs and the push-forwards of the Laplace–Beltrami
operators.

Proposition 2. Let Z and U be Riemann surfaces, endowed with the conformal metrics rZ

and rU , respectively. Let �Z and �U be the corresponding Laplace–Beltrami operators. Let
φ : Z → U be a conformal mapping. Let φ∗(rU ) (resp. φ∗(rZ)) be the pull-back of the metric
rU (resp. the push-forward of rZ). Then,

1. The operator φ∗�Z is the Laplace–Beltrami operator on U, corresponding to the pushed
forward metric φ∗(rZ).

2. The operator φ∗�U is the Laplace–Beltrami operator on Z, corresponding to the pulled
back metric φ∗(rU ).

Proof. It suffices to verify the first claim locally. Let z be a local coordinate in a neighbourhood
Z0 ⊂ Z, and let u be a local coordinate in its image U0 = φ(Z0) ⊂ U . Let f be a function in
U0. Then F(z) = f (u(z)) is the pull-back of f to Z0. In order to determine the push-forward
of the operator ∂2/∂z∂z̄ on Z0, we compute ∂2f (u(z))/∂z∂z̄. By a straightforward calculation

φ∗

(
∂2

∂z∂z̄

)
= |φ′(z)|2 ∂2

∂u∂ū
.

The pull-back of the metric 1
2 (du2 + dū2) on U0 is 1

2 |φ′(z)|2(dz2 + dz̄2). Hence, the right-
hand side of the preceding equation (multiplied by 4) is the Laplace–Beltrami operator,
corresponding to the push-forward of the metric 1

2 (dz2 + dz̄2). See equation (7). Using
proposition 1, we obtain the claim. �

Proposition 3. Let r and r̃ be conformal metrics on a Riemann surface Z. Let � and �̃ be the
corresponding Laplace–Beltrami operators. Let g(x, y) and g̃(x, y) be Green’s functions of
the operators � and �̃, respectively. Then,

g̃(x, y) = g(x, y). (8)

Proof. Let z be a local complex coordinate in Z. Then there are positive functions, r(z) and
r̃(z), such that the metrics are given by 1

2 r(z)(dz2 + dz̄2) and 1
2 r̃(z)(dz2 + dz̄2) respectively.

Set

ρ(z) = r̃(z)

r(z)
.

Let dr and dr̃ be the volume forms on Z corresponding to the metrics r and r̃ respectively.
Then,

dr̃ = ρ(·) dr . (9)

The identity equation (5) for the operator �̃ says that
∫
Z

f (x)(�̃g̃(x, y)) dr̃ (x) = f (y). We
will evaluate this integral, substituting g(x, y) for g̃(x, y). In view of proposition 1 and
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equation (9), we have∫
Z

f (x)(�̃g(x, y)) dr̃ (x) =
∫

Z

f (x)(ρ−1(x)�g(x, y))ρ(x) dr (x)

=
∫

Z

f (x)(�g(x, y)) dr (x) = f (y).

By uniqueness of the Green’s function, this implies the claim. �

Theorem 1. Let Z and U be Riemann surfaces, endowed with conformal metrics. Let �Z

and �U be the corresponding Laplace–Beltrami operators. Let gZ(·, ·) and gU(·, ·) be the
respective Green’s functions. Suppose that φ : Z → U is a conformal mapping. Then,

gZ(x, y) = gU(φ(x), φ(y)). (10)

Proof. The right-hand side of equation (10) is the pull-back of the Green’s function of the
Laplace–Beltrami operator �U . It is equal to Green’s function of the pull-back of �U , the
differential operator φ∗�U . We leave the verification of this to the reader. (The claim is
valid in a far greater generality.) Let rU and rZ be the metrics in question. By proposition 2,
the operator φ∗�U is the Laplace–Beltrami operator corresponding to the pull-back metric
φ∗(rU ). Both rZ and rU are conformal metrics. Now proposition 3 implies the claim. �

Remark. Theorem 1 extends to all Riemannian surfaces, but it does not hold in dimensions
greater than 2.

By the Riemann mapping theorem, any bounded, simply connected domain, � ⊂ C

is conformally equivalent to the unit disc. Since Green’s function of the latter is known,
Theorem 1 yields, in principle, Green’s function of any such �. The proposition below allows
to extend this observation to spherical domains.

Proposition 4. Let � be a simply connected domain in the standard sphere, such that the
complement to � has a nonempty interior. Then � is conformally equivalent to the unit disc.

Proof. Denote by S ⊂ R
3 the unit sphere. Let σ : S → C be the stereographic projection

from the north pole, (0, 0, 1). By assumption, the complement to � has an interior point,
t0. Let ρ be a rotation of R

3, such that ρ(t0) = (0, 0, 1). Since the spherical domain ρ · �

is ‘bounded away’ from (0, 0, 1), the planar domain Z = σ · ρ · � ⊂ C is bounded. Since
σ · ρ : S\{t0} → C is a homeomorphism, the domain Z ⊂ C is simply connected. Let
φ : Z → D be a conformal mapping onto the unit disc, guaranteed by the Riemann mapping
theorem. Then, ψ = φ · σ · ρ : � → D is a homeomorphism. Rotations are isometries,
hence conformal. The stereographic projection is also conformal. See, e.g., [18]. Since ψ is
a composition of conformal mappings, it is conformal. �

2.1. Example: Green’s function of the spherical disc

Our starting point is Green’s function of the unit disc, which is well known (see, e.g., [23]).
Let u, v ∈ D. We have

gD(u, v) = 1

2π
log

|u − v|
|1 − v̄u| . (11)

Let D(r) be the disc of radius r. The mapping u �→ u/r sends D(r) conformally onto D.
Theorem 1 and equation (11) imply

gD(r) = 1

2π
log

|u − v|r
|r2 − v̄u| . (12)
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The unit sphere S ⊂ R
3 is given by x2 + y2 + z2 = 1 in the Cartesian coordinates in R

3.
We will also use the spherical coordinates 0 � θ � π, 0 � φ � 2π . Then,

x = cos φ sin θ, y = sin φ sin θ, z = cos θ.

The simplest domains in S are the spherical discs. We denote by SD(ρ) ⊂ S the spherical
disc of radius ρ, where 0 < ρ < π . If the disc SD(ρ) is centred at the north pole, then

SD(ρ) = {(θ, φ) : 0 � θ � ρ}.
The stereographic projection from the south pole is given by

(x, y, z) �→ x + iy

1 + z
.

In the spherical coordinates we have

(θ, φ) �→ tan
θ

2
eiφ.

Denote by gSD(ρ)((θ, φ); (θ ′, φ′)) Green’s function of the spherical disc of radius ρ < π .
Then,

gSD(ρ)((θ, φ); (θ ′, φ′)) = 1

2π
log

∣∣ tan θ
2 eiφ − tan θ ′

2 eiφ′ ∣∣ tan ρ

2∣∣ tan2 ρ

2 − tan θ
2 tan θ ′

2 ei(φ−φ′)
∣∣ . (13)

Note that the stereographic projection sends SD(ρ) into the disc D(·) of radius tan ρ

2 .
Equation (13) now follows from theorem 1, equation (12), and the preceding formulae. The
spherical disc SD(π/2) is a hemisphere. Denote by S+ the upper hemisphere, and let gS+(·, ·)
be the corresponding Green’s function. Specializing in equation (13), we obtain

gS+((θ, φ); (θ ′, φ′)) = 1

2π
log

∣∣tan θ
2 eiφ − tan θ ′

2 eiφ′ ∣∣∣∣1 − tan θ
2 tan θ ′

2 ei(φ−φ′)
∣∣ . (14)

3. The method of images

3.1. General setting

The general purpose of this method is to express Green’s function of a differential problem via
that of a simpler problem. As the name ‘method of images’ suggests, the problems in question
are related by a symmetry. In what follows we outline the general framework of the method
of images. In the body of this section we will elaborate in the context of the Laplacian on the
Euclidean sphere.

Let X be a manifold of arbitrary dimension, and let L be a differential operator on the
space of functions on X. Let � ⊂ X be a closed domain with a piecewise smooth boundary.
We denote by LD (resp. LN ) the operator on functions in � given by L with the Dirichlet
(resp. Neumann) boundary conditions on ∂�. Under certain conditions the method of images
will allow us to express Green’s functions of LD and LN in terms of Green’s function of L.
We will now formulate these assumptions on X,L,�.

Assumptions

(i) There is a group � of diffeomorphisms of X, such that the operator L is �-invariant. Let us
say that the points x1, x2 ∈ X are �-conjugate if there exists g ∈ � such that x2 = g · x1.

(ii) Any point x ∈ X is �-conjugate to a unique ω ∈ �.
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(iii) The boundary of � is a finite union of hypersurfaces: ∂� = ∪p

i=1Yi and the interior of
the boundary is a disjoint union of their interiors: int(∂�) = ∪p

i=1Hi . Then for any point
x ∈ int(∂�) the inward unit normal vector 
n = 
n(x) is well defined.

(iv) For every x ∈ int(∂�) there is a unique nontrivial element g = g(x) ∈ �, such that
g · x = x. We then have g(x) · 
n(x) = −
n(x).

Let G(x, y) denote Green’s function of L on X. We will use the notation GD(·, ·) and
GN(·, ·) for the Dirichlet and the Neumann Green’s function of L on �. The proposition below
summarizes the method of images.

Proposition 5. Suppose that the assumptions 1–4 are satisfied. Then � has a natural parity
function, which takes values ±1. We denote it by (−1)�(γ ). Let ω,ω′ ∈ � be arbitrary points.
Then the following formulae hold:

GD(ω,ω′) = G(ω,ω′) +
∑

γ∈�;γ �=1

(−1)�(γ )G(ω, γ · ω′); (15)

GN(ω,ω′) = G(ω,ω′) +
∑

γ∈�;γ �=1

G(ω, γ · ω′). (16)

Proof. Here, G(ω,ω′) describes the influence of the original point charge inside the
fundamental region, whereas the terms in the sum correspond to mirror images outside the
fundamental region. We begin with the geometric considerations. By our assumptions,
there are p hypersurfaces Yi ⊂ X, such that the subsets Hi = int(∂�) ∩ Yi ⊂ Yi are open
and disjoint. Hence if x ∈ int(∂�), then there is a unique index 1 � i � p such that
x ∈ Hi ⊂ Yi . We will consider for the moment only this hypersurface, and suppress the
index in the discussion below. Let g = g(x) be as in assumption 4. Since x ∈ Y ∩ g · Y , the
hypersurfaces Y and g · Y intersect. If they intersect at x transversally, then g · H contains
points from int(�), which is impossible. If they intersect nontrivially, but tangentially, then
there is a neighbourhood of x having nonempty intersections with infinitely many regions
γ · �, γ ∈ �. This is impossible, in view of the discreteness of �. Thus, the only possibility
is g · Y = Y . If g : Y → Y is a nonidentity mapping, then H contains points y �= g · y. Our
assumptions preclude that. Therefore, g induces the identity transformation on Y.

Returning to the full set of hypersurfaces Yi, 1 � i � p, intersecting int(∂�), we
conclude from the preceding argument that for each index i there is an element σi ∈ � such
that for any x ∈ Hi we have σi(x) = x. The element σi restricts to the identity on Yi , but
σi · 
n(x) = −
n(x). Thus, the differential of σi is the reflection of the tangent space TxX

about the codimension one subspace TxYi ⊂ TxX. Therefore, σi reverses the orientation of X,
we have σ 2

i = 1, and Yi is the set of fixed points of σi . It is customary to call diffeomorphisms
satisfying the conditions above the reflections. Thus, σi ∈ � is a reflection of X about Yi , for
1 � i � p.

The elements σi, 1 � i � p, generate �, thus � is a reflection group of transformations.
As an abstract group, � is a Coxeter group. It means that all relations between the generators
of � follow from the p equations σ 2

i = 1, and from the p(p − 1)/2 equations

(σiσj )
nij = 1, 1 � i < j � p. (17)

The exponents nij in equation (17) may take any natural values between 2 and ∞. By
convention, nij = ∞ means that σiσj ∈ � is an element of infinite order. We refer the reader
to [4] for the classical material about reflection groups, including the facts above, and to [8, 9]
for more recent developments. We will use the standard terminology of the subject [4, 9]. For
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instance, the regions g · �, g ∈ �, are the Weyl chambers, the closed sets Yi ∩ �, 1 � i � p,
are the walls of the fundamental chamber �, etc.

We conclude the geometric part of our proof by introducing the length and the parity
functions on �. Every element γ ∈ � has several representations as a word in the generators
σi . Then �(γ ) is the minimum of lengths of these representations. The length function has
a geometric interpretation in terms of the decomposition of X into Weyl chambers [8]. A
word γ = σi1 · · · σin is reduced if n = �(γ ). Although �(γ ) is well defined, γ may have
several reduced representations. Also note that �(gh) �= �(g)�(h), in general. The parity
(−1)�(γ ) = ±1 is the unique multiplicative function on � which takes values −1 on the
generators and 1 on the identity element. A different, but equivalent way to define the parity
function is to set (−1)�(γ ) = −1 if γ is orientation reversing, and (−1)�(γ ) = 1 if γ preserves
orientation. If � is a linear reflection group [4], then (−1)�(γ ) = det(γ ).

By assumption 1, Green’s function of L is �-invariant, i.e., G(γ · x, γ · y) = G(x, y) for
any γ . Let GD(x, y),GN(x, y) be the expressions introduced by equations (15), (16), viewed
as functions on X × X. More precisely

GD(x, y) =
∑
γ∈�

(−1)�(γ )G(x, γ · y); GN(x, y) =
∑
γ∈�

G(x, γ · y). (18)

Then both GD(x, y),GN(x, y) are symmetric in their variables:

GD(y, x) = GD(x, y); GN(y, x) = GN(x, y).

Fix the second variable, and consider GD(x, y),GN(x, y) as functions of the first variable,
which varies over X. A straightforward calculation shows that GD(x, y) and GN(x, y) are
�-equivariant:

GD(γ · x, y) = (−1)�(γ )GD(x, y); GN(γ · x, y) = GN(x, y). (19)

More precisely, equation (19) means that GN(x, y) (resp. GD(x, y)) is �-invariant (resp.
�-anti-invariant) as a function of the first variable. Therefore, both GD(·, y),GN(·, y) may
be viewed as functions on the quotient space � = X/�. By the same token, without loss
of generality, the parameter y may be restricted to �. Thus, we identify GD(·, ·),GN(·, ·)
with functions on � × �. The functions GD(ω,ω′),GN(ω, ω′) are obtained from G(x, y)

by averaging over �, and the operator L is �-invariant. Hence, GD(·, ·),GN(·, ·) satisfy the
same relations with respect to L as G(·, ·), i.e., the relations that Green’s function satisfies.

It remains to establish that GD(ω,ω′) (resp. GN(ω,ω′)) satisfies the Dirichlet (resp.
Neumann) boundary conditions. This is a consequence of the anti-invariance (resp. invariance)
of the averaged functions. See equation (19). Consider GD(ω,ω′). If ω ∈ ∂(�), then there is
a generating reflection σ such that σ · ω = ω. By equation (19), GD(ω,ω′) = −GD(ω,ω′),
thus GD(ω,ω′) vanishes on ∂(�). The proof that the normal derivative of GN(ω,ω′) vanishes
on ∂(�) is analogous, and we leave it to the reader. �

Remark 1. In order to use the method of images, we need the following:

(i) Green’s function of the differential operator L on X be explicitly known.
(ii) The operator L be invariant under a particular group of diffeomorphisms of X.

(iii) The domain � be somewhat special.

A classical framework for the method of images is the Euclidean Laplacian on R
n, in

particular on R
2. Another possibility is the Laplacian, �, on a sphere, in particular, on the

unit sphere S ⊂ R
3.
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Ω

Figure 2. Great circle n-gon on the sphere.

3.2. Reflections on the sphere

Recall that the geodesics of S are the big circles. A domain � ⊂ S is a spherical polygon (or
simply a polygon) if ∂� is a finite union of geodesic segments. According to our definition,
a hemisphere is also a polygon. It is the only polygon without vertices. If � is a simple
polygon, and it is not a hemisphere, then � is uniquely determined by its vertices v1, . . . , vn,
listed in the counterclockwise order. We then say that � is a simple n-gon. The geodesic
segments ai = vivi+1, 1 � i � n, are its sides. If n = 2, � is a bi-gon. For n = 3, � is a
triangle, etc. See figure 2 for an example of a n-gon. For any polygon � we denote by �� the
group of isometries of S generated by the reflections in the sides of �. The spherical triangle
�(α, β, γ ) with the angles α, β, γ exists if and only if α + β + γ > π . If �(α, β, γ ) exists,
then it is unique, up to isometry.

Proposition 6. Let � be a spherical polygon, and let � = ��. Then the triple �,�,�

satisfies the ‘assumptions’ of the method of images if and only if � is one of the following
polygons:

1. It is a hemisphere.
2. It is the bi-gon with the angle π/n, where n = 2, 3, . . ..
3. It is one of the following triangles:

(i) The triangle �(π/2, π/2, π/n), where n = 2, 3, . . ..
(ii) The triangle �(π/2, π/3, π/3).

(iii) The triangle �(π/2, π/3, π/4).
(iv) The triangle �(π/2, π/3, π/5).

Proof. It follows from our assumptions that � tiles the sphere under reflections. Hence, each
vertex angle of � is π/n, where n is an integer. Next, we investigate which spherical polygons
have angles of this type. If � has no vertices, then we are in the case 1. Since a polygon
cannot have one vertex, the next possibility is that � is a bi-gon. Then we recover case 2.
Suppose now that � is a triangle, whose angles are π/p, π/q, π/r . A necessary and sufficient
condition for the existence of a triangle like that is

1

p
+

1

q
+

1

r
> 1. (20)

Obviously, at least one of the angles is π/2. If two angles are equal to π/2, we recover the
case 3(i). If only one angle is π/2, then without loss of generality r = 2, and p, q > 2.
Equation (20) becomes 1/p + 1/q > 1/2. It is clear that p and q cannot be both greater
than 3. Hence, without loss of generality, q = 3. Equation (20) then yields p < 6. This
leaves three possibilities: p = 3, 4, 5, which correspond to the cases 3(ii)–(iv), respectively.
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Next, we show that � cannot have more than three vertices. Suppose, for instance, that � is
a quadrilateral, with angles π/p, π/q, π/r, π/s. Analogously to equation (20), the existence
condition is

1

p
+

1

q
+

1

r
+

1

s
> 2. (21)

Since this inequality is not satisfied even with the smallest possible values p = q = r = s = 2,
we conclude that equation (21) has no solutions. The same argument works if � has more
than four vertices. It remains to check that these polygons do tile the sphere. In cases 1, 2 and
3(i) it is trivial. In the remaining cases it is verified directly. �

Remark 2. It is instructive to understand the groups � corresponding to the polygons, listed
in the proposition above. Thus, for the case 2, � = Dn, the dihedral group of order 2n. It is
the group of symmetries of the regular n-gon. In the case 3(i), � is an extension of Dn by /2.
It is the group of symmetries of the solid, obtained by taking the regular pyramid whose base
is the regular n-gon, and joining to it its reflection about the base. In the remaining three cases,
� is the group of symmetries of the appropriate Platonic solid. The solids are the cube, the
icosahedron and the dodecahedron, respectively. It is especially easy to compute |�|, because
it is equal to the number of triangles in the corresponding tiling. To compute that number we
use the well-known identity

area(�(α, β, γ )) = α + β + γ − π. (22)

This immediately yields that the orders of the group � in the cases 3(ii)–(iv) are 24, 48 and
120, respectively.

4. Applications to point vortex systems

To demonstrate the utility of the previous formulations, we apply the method to point vortex
motion on a unit sphere with solid boundaries in order to compute the vortex trajectories inside
closed simply connected domains of various shapes. We first review the basic facts connecting
Green’s function with the associated dynamics of the vortices and fluid particles. For more on
this, see chapter 3 of [19].

Assuming we know the Dirichlet Green’s function, GD , as in the notation of equation (1)
for a single source located at xα ∈ �, Green’s function for the case of an arbitrary number of
distinct sources located at xα ∈ �,α = 1, . . . , N can be constructed via linear superposition

G
(N)
D (x; x1, . . . , xN) =

N∑
α=1

GD(x; xα) ≡
N∑

α=1

G(x; xα) +
N∑

α=1

G
(α)
H (x). (23)

Then, the streamfunction governing the fluid motion at an arbitrary point x is given by

ψ =
N∑

α=1

�αGD(x; xα).

From this, one computes the motion of a vortex located at x = xβ by subtracting off the singular
contribution generated from the term α = β, giving rise to the non-singular streamfunction

ψβ ≡
(

ψ +
�β

2π
log ‖x − xβ‖

)∣∣∣∣
x=xβ

and the velocity field is then obtained in the usual way as

ẋβ ≡ (ẋβ, ẏβ) =
(

∂ψβ

∂yβ

,−∂ψβ

∂xβ

)
.
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The Hamiltonian governing the motion of a single point vortex located at xα is simply

H(xα) = �α

2
G

(α)
H (xα),

with canonical equations of motion

ẋα = ∂H
∂yα

; ẏα = − ∂H
∂xα

.

This construction for a given domain � on the surface of a sphere with a point vortex of
strength � placed at position (θv, φv) ∈ � is carried out via the following sequence of steps:

(i) Map � stereographically to �′, hence (θv, φv) �→ (rv, φv), where rv = tan(θv/2).
(ii) Consider the planar problem in �′ which we solve via the standard planar image method.

Streamlines are given by∥∥∥∥ f (z) − f (zv)

f (z) − f ∗(zv)

∥∥∥∥ = const

where z = R exp(iφ) and ξ = f (z) conformally maps the domain �′ to the upper-half
plane.

(iii) If we denote the location of the positive image vortices by ρj and the negative ones ηj ,
then the vortex Hamiltonian is given by

Hv = − �2

4π
log

(∣∣∣∣df

dz

∣∣∣∣
2

z=zv

∣∣∣∣ 1

f (z) − f ∗(zv)

∣∣∣∣
2
)

− �2

4π
log

(
(1 + |zv|2)(1 + |η0|2) · · · (1 + |ηm|2)
(1 + |ρ1|2)(1 + |ρ2|2) · · · (1 + |ρm|2)

)
.

The method, of course, hinges on our ability to correctly place the image vortices in step 2.
We demonstrate this construction in the following examples and refer the reader to [19] for
more discussions of the method and applications.

Example 1 (upper hemisphere). This is the generic case to be treated first. Take � to be
the upper hemisphere bounded by the latitude θ = θ0 = 90◦. The planar equivalent of this
domain is a circular region, hence one uses the inversion method to obtain the image system,
as described, for example, in [19]. The image system consists of just one vortex of strength
−� at the inverse point ri = r2

0

/
rv; φi = φv . The governing Hamiltonian is then

H = �2

4π
log

(
(1 + |zv|2)(1 + |zi |2)

|zv − zi |2
)

,

which yields vortex paths

(1 + r2)
(
r2 + r4

0

)
(
r2

0 − r2
)2 = const.

Vortex paths are shown in figure 3.

Example 2 (wedge-like domains). Here we take � to be the sector bounded by the longitudes
0 and π/m,m ∈ N . Then �′ is a wedge of angle π/m. The analytic function f (z) = zm

maps �′ to the upper-half plane. There are (2m − 1) image vortices, with positive vortices
located at

ρα = zv exp

(
2iπα

m

)
, 1 � α � m − 1.
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Figure 3. Vortex paths in upper hemisphere.

Figure 4. Vortex paths in a wedge-like domain.

The negative ones are located at

ηβ = z∗
v exp

(
2iπβ

m

)
, 1 � β � m.

The vortex paths, as shown in figure 4 are obtained from

(1 + r2)2

r2 sin2 mφ
= const.

Example 3 (geodesic triangles). Take � to be the half-sector bounded by the longitudes 0
and π/m,m ∈ N . �′ is the corresponding sector of a circle in the stereographic plane. It is a
standard result [16] that the function

f (z) =
[

(1 + zm)

(1 − zm)

]2

maps the sector to the upper-half plane. There are exactly (4m − 1) image vortices located at
the following locations: (m− 1) positive vortices located at the points ρα = zv exp(2π iα/m),
1 � α � m − 1; m positive vortices located at ρβ = zv exp(2π iβ/m), 1 � β � m; m

negative vortices located at ηα = z∗
v exp(2π iα/m), 1 � α � m and m negative vortices

located at ηβ = 1/z∗
v exp(2π iβ/m), 1 � β � m. The Hamiltonian for the vortex motion is

then obtained by first computing∣∣∣∣df

dz

∣∣∣∣
z=zv

= 4m|zv|m−1
∣∣zm

v + 1
∣∣∣∣(1 − zm

v

)3∣∣ .

This gives

H = − �2

4π

× log

[
16m2|zv|2m−2

∣∣zm
v + 1

∣∣2∣∣(1 − zm
v

)3∣∣2 × (1 + |zv|2)2∣∣((1 + zm
v

)/(
1 − zm

v

))2 − ((
1 + z∗m

v

)/(
1 − z∗m

v

))2∣∣2

]
.
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Figure 5. Vortex paths in a geodesic triangle.

Figure 6. Vortex paths in a latitudinal rectangle.

This yields vortex paths

[(1 + r2m)2 − 4r2m cos2 mφ](1 + r2)2

r2(r2m − 1)2 sin2 mφ
= const

which are shown in figure 5.

Example 4 (spherical rectangles). As a final example, we consider the rectangular region �

bounded by the longitudes 0 and φ1 and the latitudes θ1 and θ2. Then �′ is the annular sector
bounded by the circular arcs of radii r1 = tan(θ1/2) and r2 = tan(θ2/2) and the radial lines
φ = 0 and φ = φ1. �′ maps to the rectangle

�′′ = {(x, y)| log r1 � x � log r2; 0 � y � φ1}
under the map u = log z, where u is the plane of the rectangle �′′. The rectangle is mapped
to the lower half plane by the map

w = P(u − log r1)

where P(u) = P(u; g2; g3) is the Weierstrass P function and g2 and g3 are the Weierstrass
invariants which are related to the half periods ω = log(r2/r1) and ω′ = iφ1. The annular
sector �′ is mapped to the lower half plane by the function f (z) = P log(z/r1). As used in
[17], the image system for a vortex in a rectangle consists of a doubly infinite lattice whose
corners are occupied by image vortices and the vortex Hamiltonian is given by

H = − �2

2π
log

∣∣∣∣∣
(
1 + r2

v

)
P log(zv/r1)

P log(zv/r1) − P log(z∗
v/r1)

∣∣∣∣∣ .
Vortex paths in this spherical rectangle are shown in figure 6.
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5. Discussion

There are certainly many ways one could extend the results presented in this paper. First, the
so-called ‘method of inversion’ [11] is distinctly different from the image method and can be
used on different sorts of domains, most notably the unit disc as carried out in example 2.1.
It should, in principle, be possible to construct a general formulation of the method of inversion
as is done in this paper for the image method. Another potential extension of the ideas described
here is to use Schwarz–Christoffel mappings for closed polygonal domains on the sphere, as
is standard in the plane [7], in order to construct Green’s functions for much more general
simply connected regions on the sphere made up of geodesic segments connected with fixed
latitude segments. Arbitrary simply connected domains with smooth boundaries could then
be approximated by these polygonal regions.
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